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Abstract-Diastereomeric mixtures of 2-substituted I-vinyclyclohexyl acetates (or benxoates) are rear- 
ranged stereoselectively to 2-substituted (E)-/I-acetoxy(or benzoyloxy)ethylidenecyclohexanes by the 
catalysis of bis(acetonitrile)palladium(II) chloride. A mechanism related to the stereoselectivity and 
reactivity is discussed in terms of the conformational requirements in a transition state. 

In other study, we needed 2-substituted (E)-/?- 
hydroxyethylidenecycloalkanes in a stereochemically 
pure state.’ Wittig reaction seems to be of no value 
for such p~rpose.~ Indeed, despite considerable ex- 
perimentation, we observed a moderate selectivity for 
the reaction of 2-methylcyclohexanone and triethyl 
phosphonacetate.’ Fortunately, we have found that 
palladium(H) promotes rearrangement of 
2-substituted I-vinylcyclohexyl acetate (or benzoate) 
1, irrespective of cis, trans stereochemistry of 1, to 
provide (E)-2-substituted /I-acetoxy (or benzo- 
yloxy)ethylidene cyclohexanes 2 selectively.* In this 
paper, we describe the scope and mechanism of this 
novel rearrangement. 

RESULTS AND DISCUSSION 

It is well documented that palladium(O) and (II) 
species promote Cope’ and (polyhetero)Claisen rear- 
rangements.6 Rearrangement of allylic acetates was 
first developed by Overman et al.’ An asymmetric 
l,3-transposition in this rearrangement was noted by 
Grieco et al. and this propensity was succesfully 
applied to an enantioselective synthesis of a key 
intermediate for l2-hydroxyprostaglandins.* In gen- 
eral, however, the stereo-selectivity of this rear- 
rangement is not high, especially in the reaction 
providing n-i-substituted allylic acetates (e.g. eqn 1). 
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In contrast, 2-substituted I-vinylcyclohexyl ace- 
tates (or benzoates ) 1 were found to rearrange to 
provide tri-substituted ailylic acetates (or benzoates) 
2 selectively. 

Reactions were carried out in the presence of 4 or 
8 mol% of bis(acetonitrile)palladium(II) chloride in 
TET Vol 40. No. 10 K 

THF at an ambient or at the THF reflux temperature. 
Results together with the reaction conditions are 
summarized in Table I. 

cat. PdC12(CH3CN)2 

THF 

Generally the rearrangement of I-vinylcyclohexyl 
acetates proceeds smoothly at room temperature. 
Renzoates showed somewhat lower reactivity com- 
pared with acetates. That is, the allylic acetate 1 
(R’ = R2 = Me) attained completion at room temper- 
ature within 20 h, while the corresponding benzoate 1 
(R’ = Me, R2 = Ph) reached only 12% conversion at 
room temperature after 14 h and for the completion 
of reaction were required the reflux temperature 
and an additional 4mol% of a catalyst (eqn 2, 
entries I and 2 in Table 1). With similar ease 
I -vinyl-2-phenylcyclopentyl benzoate was rearranged 
to provide the expected product in 60% isolated yield 
(room temperature for 24 h in the presence of 4 mol% 
of a catalyst). In contrast to these, 2-methyl substi- 
tuted I-vinylcyclooctyl and 1-vinylcyclododecyl ben- 
zoates were recovered unchanged even after a pro- 
longed reaction time in the presence of 20 mol% of a 
catalyst (THF, reflux, 14 h). 

The stereochemical course of the rearrangement 
was thoroughly investigated with the above men- 
tioned acetate 1 (R’=R2=Me). Starting from ca 2 : I 
mixture of cis- and trans-isomers, the rearranged 
product consisted of the single isomer whose ho- 
mogeneity was checked by means of VPC, ‘H and “C 
NMR spectra. The stereochemistry of newly formed 
n-i-substituted double bond was determined to be E 
on the. basis of a negligibly small europium 
(III>induced paramagnetic shift of the methyl dou- 
blet of the corresponding aIIylic alcohol 3, prepared 
by the alkaline hydrolysis (KOH/MeOH) of the 
acetate 2 (R’=RLMe). Moreover the E-configuration 
of 2 (R’=Ph. R*=Me) was ascertained by the NOE 
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Table 1. Stereoselective rearrangement of allylic carboxylates catalyzed by palladium(I1) 

Starting Carboxylate 1. Catalyst Time Conv. 
Entry 

Isolated Yield of 2 

Rl R2 (mol%) 
Temp. 

(h) (Xl (Z) 

1 Me 

2 Me 

3 Et 

4 II 

5 i-Pr 

6 Ph 

Me 

Ph 

Me 

II 

Me 

Me 

4 r.t. 20 100 85.3 

a reflux 5a 97.5 69.4 

4 r.t. 21 84.8 80.2 

II reflux 3 100 71.6 

4 r.t. 47 100 92.5 

4 r.t. 45 100 96.2 

(a) After the reaction at r.t. for 14 hours in the presence of 4 mol% of 

catalyst (12% conversion), the mixture was heated for 5 hours with 

additional 4 mol% of a catalyst. 

_ 

Scheme I. 

experiments9 (9.4 and 4.5% increase of an area in- 
tensity of C(2’)H protons on irradiation at the qua- 
torial and axial C(6)H protons, respectively, and 
2.4% increase of an area intensity of C(l’)H proton 
on irradiation of C(2)H proton. The homogeneity 
of other products listed in Table 1 and 2-phenyl- 
2’-benzoyloxethylidenecyclopentate was also ascer- 
tained by means of VPC, ‘H and ‘%Z NMR spectra 
and their E-stereochemistry was assigned by similar 
analogy. 

The stereoselectivity and reactivity of the present 
rearrangement may be explained as follows (Scheme 
1). Due to a large steric demand of vinyl group 
coordinated by W(H), the vinyl group would 
strongly favor not only an equatorial orientation but 
also an anti-conformation with respect to R’ substit- 
uent. And hence rearrangement may take place selec- 
tively through anti conformers (&-l-anti, trans-l- 
anti) to give E-2 stereoselectively. 

The somewhat diminished reactivity of benzoates 
might be attributed to a low neucleophlicity of the 
carbonyl oxygen and a decreased population of an 
axial orientation of oxybenzoyl group. 

EXPERIMENTAL 

M.ps were determined in capillary tubes with a Buchi 
apparatus and not corrected. Unless otherwise indicated, 
short-path (bulb-to-bulb) distillations were carried out in a 
Kugelrohr apparatus. Microanalyses were performed by 

Microanalysis Center of Kyoto University. IR spectra were 
measured with JASCO A-102 Diffraction Grating Infrared 
Spectrophotometer. ‘H and “C NMR spectra were recorded 
with a JEOL JNM-PMX 60 and a JEOL FX-90 spew 
trometers, respectively. Mass spectra were measured either 
on a Hitachi Model RMU 6C instrument or on a JEOL 
D-300 instrument (high-resolution mass spectrometer). 

Soluenr and reagent. Tetrahydrofuran (THF) was dried 
over Na-benzophenone, distilled and kept under argon at- 
mosphere. Bis-(acetonitrile)palladium chloride was pre- 
pared by the reported method.1° 

2-Substituted I-~inylcycohexyl and I-ohylcyclopentyl 
acetates and benmates, 1. 2-Phenyl-I-vinylcyclopentyl, 
2-methyl-I-vinylcyclohexyl, 2-methyl-I-vinylcyclooctyl, and 
2-methyl-l -vinylcyclododecyl benzoates were prepared by the 
following sequential reactions from the corresponding 
2-substituted cycloalkanones ((i) vinyllithium,” 
THF-ether-pentane (4: I : I)/liq. N’, - 120”. (ii) benzoyl 
chloride, 0”). ZMethyl-I-vinylcyclohexyl, Zethyl-l- 
vinylcyclohexyl, tisopropyl- I-vinylcyclohexyl, and 
2-phenyl-I-vinylcyclohexyl acetates were prepared by the 
similar sequential reactions from the corresponding 
2-substituted cycloalkanones ((i) vinylmagnesium bromide, 
THF, 0”. (ii) AQO, 0”). When the acetylation was incorn- 
plete, the reaction mixture obtained above was treated with 
A~O/Et,N/4-dimethylaminopyridine (0.2 eq)).12 

General procedure for he palhdiurn(II) catalyzed rear- 
rungemenf. Into argon-purged bis(acetonitrile)palladium 
chloride (0.08 mmol) was added a solution of allylic acetate 
1 (2.0 mmol) in THF (IO ml). The clear solution was stirred 
at the temperature indicated in Table I. The progress of 
reaction was monitored by means of VPC or TLC. After the 
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reaction had completed or ceased essentially, the solvent was 
distilled off under vacuum and the purification of the residue 
through column chromatography (silica gel, n-hexane- 
EtOAc gradient) gave spectroscopically pure materials 2 in 
the yields given in Table 1. 

The spectral and analytical data of the new compounds 
are as follows. 

(E)-2-Phenyl-2’-@enzoyloxy)ethylidenecyclopentane: b.p. 
220” (0.3 mmHa): IR (neat 6lm) 1718 (vs). 1270 (vs). 1110 
(s), 710 (ms), 7% (m)\ ‘H NMR d (CD&) 1.49-2.37 (4H, 
m), 2.37-2.87 (2H, m), 4.84 (2H, d, J = 7.2 Hz), 5.00-5.45 
(lH, m), 7.27 (5H, br.s), 7.14-7.67 (3H, m), 7.90-8.24 (2H. 
m); “C NMR 6 (CDCl,) 24.45, 29.56, 35.98, 51.80, 63.02, 
116.81, 125.01, 126.05, 127.30, 128.15, 128.21, 129.47, 
130.38, 132.59, 153.18, 166.40; mass spectrum, m/e (relative 
intensity) 292 (M+, 0.14). 268 (18), 170 (100). 155 (58). 142 
(100). 141 (IO@), 105 (100). 91 (40). (Found: C, 82.29; H, 
6.97. Calc. for Cr,,H,02: C. 82.16; H. 6.890/,.) 

(E)-2-Methyl-2’-@enzoyloxy)ethylidenecyclohexane 2 
(R’=Me, R*=Ph) (entry 2): b.p. 170” (0.6 mmHg); IR (neat 
film) 1720 (vs), 1605 (w), 1270 (vs), 1110 (s), 710 (s); ‘H 
NMR 6 (CDCI,) 1.06 (3H, d. J = 6.6 Hz), 1.23-2.90 (9H. 
m), 4.90 (2H, d, J = 7.OHx), 5.43 (IH, t, J= 7.0Hz), 
7.33-7.73 (3H, m), 7.93-8.30 (2H. m): ‘)c NMR d (CDCI,) 
18.29, 25.23, 28.00, 28.69, 36.45;38.45, 61.20,‘112.78, 
128.08. 129.42. 130.50. 132.50. 150.54. 166.44: mass snec- 
trum, m/e (relative intensity) 244 (M+, 0.5). 122 (100)~‘107 
(40). 105 (62). 93 (49). (Found: C, 78.37; H, 8.51. Calc. for 
C,,H,O,: C, 78.65; H, 8.25x.) 

(E)-2-Ethyl-2’-(acetoxy)ethylidenecyclohexane 2 (R’=Et, 
R*=Me) (entries 3 and 4): b.p. 120” (4 mmHg); IR (neat film) 
2950 (s), 1745 (vs), 1640 (br.w), 1450 (m), 1370 (m), 1245 (s), 
1020 (m); ‘H NMR 6 (CDCI,), 0.84 (3H, t, J = 7.0 Hz), 
1.062.80 (IIH, m), 2.06 (3H, s), 4.62 (2H. d, J=7.2Hz). 
5.28 (lH, t, J = 7.2 Hz); “C NMR d (CDCl,) 11.92, 20.91, 
23.62, 24.54, 27.14, 28.12, 33.16. 46.22, 60.68, 114.37, 
148.99, 170.83; mass spectrum, m/e (relative intensity) 196 
(M’, 0.2) 136 (98), 121 (36). 107 (lOO), 81 (35). 79 (38). 43 
(59). (Found: C, 73.72; H, 10.21. Calc. for C,,H,O,: C, 
73.43; H, 10.27x.) 

(E)-2-Isopropyl-2’-(acetoxy)ethylidenecyclohexane 2 (RI= 
i-Pr, R’=Me) (entry 5): IR (neat film) 2930 (s), 1744 (vs), 
1665 (w). 1450 (m), 1370 (m), 1230 (vs), 1022 (m), 955 (w); 
‘H NMR d (CDCI,) 0.78 (3H, d, J = 6.8 Hz), 0.92 (3H, d, 
J = 6.0 Hz), 1.13-2.60 (lOH, m), 2.05 (3H, s), 4.57 (2H, d, 
J = 7.0 Hz); “C NMR 6 (CDCI,) 20.29, 20.89, 21.46, 21.93, 
26.01, 26.14, 28.00, 29.69, 52.40, 60.51, 115.94, 148.71, 
170.82; mass spectrum, m/e (relative intensity) 210 (M+, 
0.02). 150 (72). 135 (45), 107 (IOO), 57 (53). 43 (21). (Found: 
C. 74.15; H, 10.75. Calc. for C,,H,O,: C, 74.24; H, 10.54x.) 

(E)-2-Phenyl-2’-(acetoxy)ethylidenecyclohexane 2 (RI= 
Ph, R’=Me) (entry 6): IR (neat film) 3030 (VW), 2930 (ms), 

1738 (vs), 1664 (br.m), 1605 (w). 1370 (m), 1230 (vs), 1020 
(m), 695 (ms); ‘H NMR d (CDCI,) 1.20-2.10 (7H, m), 1.98 
(3H, s), 2.62 (IH, br.d, J= 14Hz). 3.32 (lH, br.t, 
J = 14 Hz), 4.57 (2H, d, J = 6.8 Hz), 4.83 (lH, t, J = 6.8 Hz), 
7.09-7.44 (SH. m); “C NMR 6 (CDCl,) 20.81, 25.70, 27.70, 
29.08, 33.64, 50.45, 60.60, 116.81, 126.05, 128.04, 128.38, 
142.47. 148.88, 170.73; mass spectrum, m/e (relative in- 
tensity) 184 (M+-@l, lOO), 169 (16). 142 (47). 141 (51), 91 
(10). (Found: C, 78.42; H, 8.32. Calc. for C,,H,O,: C, 78.65; 
H, 8.25x.) 
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